
Processor Architecture

Types of Processor Architecture
 Von-Neumann Architecture

 Harward Architecture

 CISC(Complex Instruction Set computer) Architecture

 RISC(Reduced Instruction Set computer) Architecture

How to classify processors

 Categorized by memory organization

 Von-Neumann architecture

 Harvard architecture

 Categorized by instruction type

 CISC

 RISC

Harvard architecture

 Separate memory into 2 types

 Program memory

 Data memory

 Used in MCS-51, MIPS etc.

Harvard architecture

ProgramData

Address

Data

Processor
Read

Write

Read

Harvard architecture

Von-Neumann architecture

 Combine program and data in 1 chunk of memory

 Example : 80x86 architecture

Von-Neumann architecture

Microsoft

Word
Adobe Photoshop

เอกสารของ
Word

รปูทีก่ าลงัถูกตดัต่อ
โดย Photoshop

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

2
5

0
0

0
0

0
0

0
9

2
5

0
0

0
0

0
0

4
2

9
4

9
6

7
2

9
5

Windows XP

CPU

M
e
m

o
ry

Von-Neumann architecture

Features CISC

 Complex instruction set computer

 Large number of instructions (~200-300

instructions)

 Specialized complex instructions

 Many different addressing modes

 Variable length instruction format

 Memory to memory instruction

 For Example : 68000, 80x86

Features RISC

 Reduced instruction set computer

 Relatively few number of instructions (~50)

 Basic instructions

 Relatively few different addressing modes

 Fixed length instruction format

 Only load/store instructions can access memory

Features RISC

 Large number of registers

 Hardwired rather than micro-program control

 For Example : MIPS, Alpha, ARM etc.

Multiplying Two Numbers in Memory

Main Memory is

divided into locations

numbered from (row)

1: (column) 1 to (row)

6: (column) 4.

The execution unit

is responsible for

carrying out all

computations.

However, the execution unit can only

operate on data that has been loaded

into one of the six registers (A, B, C,

D, E, or F).

 Diagram represents the storage scheme for a generic computer

 The main memory is divided into locations numbered from (row)
1: (column) 1 to (row) 6: (column) 4.

 The execution unit is responsible for carrying out all
computations. However, the execution unit can only operate on
data that has been loaded into one of the six registers (A, B, C,
D, E, or F).

 Let's say we want to find the product of two
numbers - one stored in location 2:3 and another
stored in location 5:2 - and then store the product
back in the location 2:3.

RISC APPROACH

Multiplying Two Numbers in Memory

LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

15

5

A = 15

A * B

15 * 5

B = 5

Store 75 in A

CISC APPROACH

Multiplying Two Numbers in Memory

MULT 2:3, 5:2

"a = a * b."

15

5

A = 15

A * B

15 * 5

B = 5

Store 75 in A

The CISC Approach
 The primary goal of CISC architecture is to complete a task in

as few lines as possible.

 This is achieved if we build a processor hardware that is
capable of understanding and executing a series of
operations.

 For this particular task, a CISC processor would come prepared
with a specific instruction (we'll call it "MULT").

 When executed, this instruction loads the two values into
separate registers, multiplies the operands in the execution
unit, and then stores the product in the appropriate register

 Thus, the entire task of multiplying two numbers can be
completed with one instruction:

MULT 2:3, 5:2

 MULT is what is known as a "complex instruction."

 It operates directly on the computer's memory banks and does
not require the programmer to explicitly call any loading or
storing functions.

 It closely resembles a command in a higher level language. For
instance, if we let "a" represent the value of 2:3 and "b" represent the
value of 5:2, then this command is identical to the C statement "a = a
* b."

 One of the primary advantages of this system is that the
compiler has to do very little work to translate a high-level
language statement into assembly. Because the length of the
code is relatively short, very little RAM is required to store
instructions.

 The emphasis is put on building complex instructions directly
into the hardware.

The RISC Approach
 RISC processors only use simple

instructions that can be executed within
one clock cycle.

 Thus, the "MULT" command described above
could be divided into three separate
commands: "LOAD," which moves data from
the memory bank to a register, "PROD," which
finds the product of two operands located
within the registers, and "STORE," which
moves data from a register to the memory
banks.

 LOAD A, 2:3

LOAD B, 5:2

PROD A, B

STORE 2:3, A

 This may seem like a much less efficient way of completing the
operation. Because there are more lines of code, more RAM is
needed to store the assembly level instructions. The compiler must
also perform more work to convert a high-level language
statement into code of this form.

 However, the RISC strategy also brings some very important
advantages

 Because each instruction requires only one clock cycle to execute,
the entire program will execute in approximately the same amount of
time as the multi-cycle "MULT" command.

 These RISC "reduced instructions" require less transistors of
hardware space than the complex instructions, leaving more
room for general purpose registers

The Performance Equation
 The following equation is commonly used for

expressing a computer's performance ability:

 The CISC approach attempts to minimize the
number of instructions per program, sacrificing
the number of cycles per instruction.

 RISC does the opposite, reducing the cycles per
instruction at the cost of the number of
instructions per program.

 Separating the "LOAD" and "STORE" instructions
actually reduces the amount of work that the
computer must perform.

 After a CISC-style "MULT" command is executed,
the processor automatically erases the registers.
If one of the operands needs to be used for another
computation, the processor must re-load the data
from the memory bank into a register.

 In RISC, the operand will remain in the register
until another value is loaded in its place.

 CISC

 Emphasis on hardware

 Includes multi-clock
complex instructions

 Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

 Small code sizes,
high cycles per second

 Less Transistors used for storing
complex instructions

 Easy to program

 Efficient use of memory

 RISC

 Emphasis on software

 Single-clock,
reduced instruction only

 Register to register:
"LOAD" and "STORE"
are independent instructions

 Low cycles per second,
large code size

 Spends more transistors
on memory registers

Addressing Modes

 The operation field of the instruction specifies the
operation to be performed.

 This operation must be executed on some data stored
in computer registers on memory

 The way the operands are chosen during program
execution is dependent on the addressing modes of
the instruction

 So we say that addressing tells us where operands
are stored

 Three major phases of instruction cycle.

 Fetch the instruction

 Decode

 Execute

Program counter
 Pc keep track of the instructions in the program stored

in memory.

 PC holds the address of the instruction to be
executed next and is incremented each time an
instruction is fetched from memory.

 The decoding done in step 2 determines the operation
to be performed, the addressing mode of the
instruction and the location of the operands.

 The computer then executes the instruction and
returns to step 1 to fetch the next instruction in
sequence.

 Instruction format also consists of addressing mode field sometimes.

 The operation code specifies the operation to be performed

 The mode field is used to locate the operands needed for the operation

 There may or may not be an address field in the instruction

 If there is an address field it may designate a memory address or a
processor register.

 There are two modes that need no address field at all

 Implied modes

 Immediate modes

Implied modes
 In this mode the operands are specified

implicitly in the definition of the instructions.

 Ex: the instruction “ complement accumulator”
is an implied mode instruction because the
operand in the accumulator register is implied
in the definition of the instruction.

 In fact all register reference instruction that
use an accumulator are implied mode
instruction

Immediate mode
 In this mode the operands is specified in the

instruction itself.

 An immediate mode instruction has an
operand field rather than an address field

 The operand field contains an actual operand

 Immediate modes instruction are useful for
initializing register to the constant value.

Register mode

 In this mode the operands are in registers that

reside within the CPU

 The particular register is selected from a register

field in the instruiction

Register indirect mode

 In this mode the instruction specifies the register

in the CPU whose contents give the address of

the operands in the memory

 The selected register contains the address of the

operands rather than the operands itself

Effective address

 Is the address of the operand in a computational

type instruction

Direct address mode

 In this mode the effective address is equal to the

address part of the instruction

Indirect address mode

 In the mode the address field of the instruction

gives the address where the effective address is

stored in the memory

 Control fetches the instruction from memory and

uses its address part to access memory again to

read the effective address

Relative address mode

 In this mode the contentr ogf the program counter

is added to the address [part of the instruction in

order to obtain the effective address

Index Register

 An index register in a computer's CPU is a

processor register used for modifying operand

addresses during the run of a program

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Operand

Indexed addressing mode
 In this mode the contents of the indexed register is

added to the address part of the instruction to obtain
the effective address

 The index register is the special CPU register that
contain an index value

 The address field of the instruction defines the
beginning address of the data array in memory

 The distance between the beginning address and the
address of the operand is the index value stored in
the index register.

Example

PC = 200

R1 = 400

XR = 100

AC

LOAD TO AC MoDE

ADDRESS = 500

NEXT INSTRUCTION

700

450

900

800

325

300

MEMORY
ADDRESS

200

201

202

399

400

500

600

702

800
INSTRUCTION IS AT ADDRESS

200 & 201

LOAD TO AC

ADDRESS FIELD = 500

PROCESSOR

REGISTER

INDEX

REGISTER

Find the effective address and content of AC if the mode is :

 Direct address mode

 Immediate operand

 Indirect address

 Relative address

 Indexed register

 Register

 Register indirect

Addressing modes Effective address Contents of AC

Direct address mode 500 800

Immediate operand 201 500

Indirect address 800 300

Relative address

702 325

Indexed register 600 900

Register -- 400

Register indirect

400 700

